Functional equations with several solutions
نویسندگان
چکیده
منابع مشابه
Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations
We study a scalar linear difference equation with several delays by transforming it to a system of Volterra equations without delays. The results obtained for this system are then used to establish oscillation criteria and asymptotic properties of solutions of the considered equation.
متن کاملPeriodic Solutions of Functional Dynamic Equations with Infinite Delay
In this paper, sufficient criteria are established for the existence of periodic solutions of some functional dynamic equations with infinite delays on time scales, which generalize and incorporate as special cases many known results for differential equations and for difference equations when the time scale is the set of the real numbers or the integers, respectively. The approach is mainly ba...
متن کاملPositive periodic solutions of functional differential equations
We consider the existence, multiplicity and nonexistence of positive o-periodic solutions for the periodic equation x0ðtÞ 1⁄4 aðtÞgðxÞxðtÞ lbðtÞf ðxðt tðtÞÞÞ; where a; bACðR; 1⁄20;NÞÞ are o-periodic, Ro 0 aðtÞ dt40; Ro 0 bðtÞ dt40; f ; gACð1⁄20;NÞ; 1⁄20;NÞÞ; and f ðuÞ40 for u40; gðxÞ is bounded, tðtÞ is a continuous o-periodic function. Define f0 1⁄4 limu-0þ f ðuÞ u ; fN 1⁄4 limu-N f ðuÞ u ; i0...
متن کاملOn two functional equations and their solutions
The present work aims to determine the solution f : R2 → R of the equation f(ux − vy, uy − vx) = f(x, y) + f(u, v) + f(x, y) f(u, v) for all x, y, u, v ∈ R without any regularity assumption. The solution of the functional equation f(ux+ vy, uy− vx) = f(x, y) + f(u, v) + f(x, y) f(u, v) is also determined. The methods of solution of these equations are simple and elementary. These two equations ...
متن کاملAnalytic Solutions for Iterative Functional Differential Equations
Because of its technical difficulties the existence of analytic solutions to the iterative differential equation x′(z) = x(az + bx(z) + cx′(z)) is a source of open problems. In this article we obtain analytic solutions, using Schauder’s fixed point theorem. Also we present a unique solution which is a nonconstant polynomial in the complex field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1969
ISSN: 0022-247X
DOI: 10.1016/0022-247x(69)90119-x